v0.17.53
v0.17.53 v0.17.54 v0.17.52 v0.17.51 v0.17.50 v0.17.49 v0.17.48 v0.17.47 v0.17.46 v0.17.45 v0.17.44 v0.17.43 v0.17.42 v0.17.41 v0.17.40 v0.17.39 v0.17.38 v0.17.37 v0.17.36 v0.17.35 master

Dataloaders

Optimizing N+1 database queries using Dataloaders
[edit]
You are looking at the docs for an older version (v0.17.53). The latest version is v0.17.54.

Dataloaders consolidate the retrieval of information into fewer, batched calls. This example demonstrates the value of dataloaders by consolidating many SQL queries into a single bulk query.

The Problem

Imagine your graph has query that lists todos…

query { todos { user { name } } }

and the todo.user resolver reads the User from a database…

func (r *todoResolver) User(ctx context.Context, obj *model.Todo) (*model.User, error) {
	stmt, err := r.db.PrepareContext(ctx, "SELECT id, name FROM users WHERE id = ?")
	if err != nil {
		return nil, err
	}
	defer stmt.Close()

	rows, err := stmt.QueryContext(ctx, obj.UserID)
	if err != nil {
		return nil, err
	}
	defer rows.Close()

	if !rows.Next() {
		return nil, rows.Err()
	}

	var user model.User
	if err := rows.Scan(&user.ID, &user.Name); err != nil {
		return nil, err
	}
	return &user, nil
}

The query executor will call the Query.Todos resolver which does a select * from todo and returns N todos. If the nested User is selected, the above UserRaw resolver will run a separate query for each user, resulting in N+1 database queries.

eg:

SELECT id, todo, user_id FROM todo
SELECT id, name FROM users WHERE id = ?
SELECT id, name FROM users WHERE id = ?
SELECT id, name FROM users WHERE id = ?
SELECT id, name FROM users WHERE id = ?
SELECT id, name FROM users WHERE id = ?
SELECT id, name FROM users WHERE id = ?

Whats even worse? most of those todos are all owned by the same user! We can do better than this.

Dataloader

Dataloaders allow us to consolidate the fetching of todo.user across all resolvers for a given GraphQL request into a single database query and even cache the results for subsequent requests.

We’re going to use vikstrous/dataloadgen to implement a dataloader for bulk-fetching users.

go get github.com/vikstrous/dataloadgen

Next, we implement a data loader and a middleware for injecting the data loader on a request context.

package loaders

// import vikstrous/dataloadgen with your other imports
import (
	"context"
	"database/sql"
	"net/http"
	"strings"
	"time"

	"github.com/vikstrous/dataloadgen"
)

type ctxKey string

const (
	loadersKey = ctxKey("dataloaders")
)

// userReader reads Users from a database
type userReader struct {
	db *sql.DB
}

// getUsers implements a batch function that can retrieve many users by ID,
// for use in a dataloader
func (u *userReader) getUsers(ctx context.Context, userIDs []string) ([]*model.User, []error) {
	stmt, err := u.db.PrepareContext(ctx, `SELECT id, name FROM users WHERE id IN (?`+strings.Repeat(",?", len(userIDs)-1)+`)`)
	if err != nil {
		return nil, []error{err}
	}
	defer stmt.Close()

	rows, err := stmt.QueryContext(ctx, userIDs)
	if err != nil {
		return nil, []error{err}
	}
	defer rows.Close()

	users := make([]*model.User, 0, len(userIDs))
	errs := make([]error, 0, len(userIDs))
	for rows.Next() {
		var user model.User
		err := rows.Scan(&user.ID, &user.Name)
		users = append(users, &user)
		errs = append(errs, err)
	}
	return users, errs
}

// Loaders wrap your data loaders to inject via middleware
type Loaders struct {
	UserLoader *dataloadgen.Loader[string, *model.User]
}

// NewLoaders instantiates data loaders for the middleware
func NewLoaders(conn *sql.DB) *Loaders {
	// define the data loader
	ur := &userReader{db: conn}
	return &Loaders{
		UserLoader: dataloadgen.NewLoader(ur.getUsers, dataloadgen.WithWait(time.Millisecond)),
	}
}

// Middleware injects data loaders into the context
func Middleware(conn *sql.DB, next http.Handler) http.Handler {
	// return a middleware that injects the loader to the request context
	return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
		loader := NewLoaders(conn)
		r = r.WithContext(context.WithValue(r.Context(), loadersKey, loader))
		next.ServeHTTP(w, r)
	})
}

// For returns the dataloader for a given context
func For(ctx context.Context) *Loaders {
	return ctx.Value(loadersKey).(*Loaders)
}

// GetUser returns single user by id efficiently
func GetUser(ctx context.Context, userID string) (*model.User, error) {
	loaders := For(ctx)
	return loaders.UserLoader.Load(ctx, userID)
}

// GetUsers returns many users by ids efficiently
func GetUsers(ctx context.Context, userIDs []string) ([]*model.User, error) {
	loaders := For(ctx)
	return loaders.UserLoader.LoadAll(ctx, userIDs)
}

Add the dataloader middleware to your server…

// create the query handler
var srv http.Handler = handler.NewDefaultServer(generated.NewExecutableSchema(...))
// wrap the query handler with middleware to inject dataloader in requests.
// pass in your dataloader dependencies, in this case the db connection.
srv = loaders.Middleware(db, srv)
// register the wrapped handler
http.Handle("/query", srv)

Now lets update our resolver to call the dataloader:

func (r *todoResolver) User(ctx context.Context, obj *model.Todo) (*model.User, error) {
	return loaders.GetUser(ctx, obj.UserID)
}

The end result? Just 2 queries!

SELECT id, todo, user_id FROM todo
SELECT id, name from user WHERE id IN (?,?,?,?,?)

You can see an end-to-end example here.